
Optical digital filtering, splitting and combining 
 

The theory about digital filters has been introduced. The digital filter designed is needed as a first 

step to the optical design of the desired filter, to be able to get the coefficients that will be 

mapped into the optical filter parameters. But some differences exist between both designs: 

 In the digital procedure, the filter is designed using a low pass filter, which means that 

we start to work with a baseband signal. However, the optical filter is designed to work 

in a high frequency band, with a repeated spectrum every 

FSR (Free Spectral Range). 

 In the digital procedure, the coefficients that we can obtain are real, whereas in the 

optical design the coefficients will be complex. 

 In digital filters, we have introduced the complexity factor as a number of filter stages 

(or degree of the polynomials). In optical designs the complexity is not only the number 

of stages but the number of tuning elements (heaters) also (combination of both), which 

is explained later 

 

 

Optical Filter principles: 

The Filter functions arise from the interference of two or more waves that are delayed relative to 

each other. The incoming signal is split into multiple paths by a division of the wave front or 

amplitude. And after travelling along different paths (in length) the fields are combined. For this 

combination it is needed that the waves have the same polarization, frequency and be 

temporally coherent over the longest delay length. And when the combination arises their 

relatives phases determine if the interference is constructive or destructive. The phase φ for each 

path is the product of the distance traveled L and the propagation constant β (β = 2πn/λ), where 

n is the effective index, so the phase for each path is then expressed as a multiple of β L, φN = N 

β L where N is an integer. The key to analyzing optical filters using Z-transforms is that each 

delay be an integer multiple of a unit delay length L. The total electrical field is at the end the 

sum of the all optical paths given by 

E = E0        + E1        + E2      + ... 

where the complex mode amplitude is denoted by E. To obtain the Z-transform, the phase must 

be expressed as a multiple of the unit delay T, where T is giving by 

T =nLc 

where c is the speed of the light. Rewriting β L in terms of Ω yields β L = Ω[ne(Ω)L/c] = 

ΩT(Ω) For a dispersion less delay line, T is a constant and we obtain is 

E = E0 + E1z−1+ E2z−2+ ... 

by substituting z−1 for     . As it was said in Section 3.1, the optical frequency response is 

periodic with FSR of 1/T. The center frequency fc = c/λc is defined so that L is equal to an 

integer number of wavelengths, mλc = nL. At λc, the contributions from each path of length N 

L differente  by 2π and thus add constructively in the absence of any other source of relative 

phase difference. 

 



where c =     and -js = -j  ,  X1 and X2 are the inputs of the coupler and Y1 and Y2 are 

the outputs. 

 
Digital filter complexity 

At this point, an important factor to keep in mind can be introduced: the complexity of the filter. 

In digital design, the complexity of the filter is given by the number of the stages, in other 

words, the degree of the polynomials in numerator and denominator in . This number of stages 

depends mainly on the slope of the filter response: the steeper the response is (a narrower 

transition band) the higher the order of the filter will be. And it is an important issue if we want 

to fabricate the filter in a limited space (in our case, integrated on a chip). 

 

Poles and Zeros 

The filter input and output are related by a weighted sum of inputs and previous outputs. The 

relationship for a discrete linear system with a discrete input signal is as follows: 

 
The weights are given by the a and b coefficients. The Z-transform of this discrete sequence 

results in: 

 
and the transfer function can be obtained, that is a ratio of polynomials: 

 
where A(z) and B(z) are M th and N th order polynomials in the denominator and nominator of 

H(z), respectively. The expression for H(z) can also be written in term of the roots of the 

polynomials as follows: 

 
The roots are complex numbers and are given different names depending on whether they are 

from the numerator or denominator polynomials. The zeros of the numerator, also called the 

zeros of H(z), are reprinted by zm. Zeros that occur on the denominator polynomial, designated 

by pn, are called poles. The gain is set by Γ. For passive filters, the transfer function can never 

be greater than 1, so Γ has a maximum value determined 

by max{| H(z) |z=ejΩ } = 1. A pole-zero diagram is a convenient way to reveal the locations of 

the poles and zeros of a filter in the complex plane. The unit circle is also depicted in the 



diagram and one trip around it corresponds to 2×π (one FSR in optical filters). An example 

pole-zero diagram is shown in Figure 

 
Digital filters are classified by the polynomials. A Moving Average (MA) filter has only zeros 

and is also referred to as a Finite Impulse Response (FIR) filter. It consist only of feed-forward 

paths. An Autoregressive (AR) filter has only poles and contains one or more feedback paths. A 

pole produces an impulse response with an infinite number of terms in contrast to the finite 

number of terms of MA filters. Filters with both poles and zeros are referred to as an 

Autoregressive Moving Average (ARMA) filters. An Infinite Impulse Response (IIR) filter 

must contain at least one pole. Since the IIR designation is ambiguous with respect to whether a 

filter has a zero or not, the MA/AR/ARMA terminology is used. 

 

Linear Phase Filters 

An important class of filters are those having linear-phase. Those filters have a constant group 

delay and thus are dispersion-less. No phase distortion is induced on to the signal. A distortion-

less filter has a magnitude response that is flat across the frequency band of the input signal and 

the phase response in the passband region is a linear function of frequency. Linear phase filters 

are important in applications where no phase distortion is allowed. A Moving Average filter or 

FIR filter can be designed to have a linear phase. Following with the previous subsection, if all 

the zeros are inside the unit circle, a minimum-phase response results. Conversely, if all the 

zeros are outside the unit circle, a maximum-phase response results. The minimum-phase 

system implies a minimum  



 
 

group delay function whereas the maximum group delay occurs in a maximum-phase system. 

As an aside, all stable AR filters are minimum-phase. Linear-phase filters can have very sharp 

transitions in the magnitude response, although many stages are required, without introducing 

dispersion. 

 

Digital filter design procedure 

So far the theory about filter description has be introduced. Now a short explanation is made 

about the procedure itself. Actually several approaches exists for the design of digital filters. 

some of them can be summarized in the following subsections, because they will be useful in, 

where the optical design procedure (together with the digital one) is detailed. 

 

Classical design methods for Autoregressive Moving Average filters The classical methods for 

filter design can only be used when the filter to be designed has the same number of poles and 

zeros in its response, which means the same polynomial order both in the numerator and the 

denominator. Then, the steps to design a digital filter can be summarized as follow: 

1. The first step is to choose the desired spectral range as well as the ripple conditions in   

the pass band and the attenuation. 

2. Starting with the procedure, normalize the frequency range is needed, between 0 

and 2π, where the 2π is the Frequency Spectral Range (FSR). And afterwards, 

normalize the cut-off and stop band frequencies. 

3. The next step is just calculating the coefficients in the Laplace domain (analog 

filters), with the formulas we have from each filter type (see next subsections). 

4. After that, it is necessary to change to the Z-domain in order to work with 

delays (to make the filter digital), using the bilinear transform, and get the poles 

and zeros. This bilinear transformation arises from the relation between the 

frequency response of the analog filter H(s) and the digital filter H(z). 

 We can make the equality H(z =     = H(jΩ(ω)) where Ω(ω) is a nonlinear function 

called frequency warping. Then the bilinear transform can be expressed as 

 
 

 



and the frequency warping is obtained by setting z =      

 
5. With these poles and zeros, we have the transfer function of the filter (the 

polynomials), therefore, the filter is designed. 

The process to design the filter is started using a prototype analog low-pass filter H(s), 

with cut-off frequency ωc = 1. For each class of analog filter, there are equations which 

constrains the possible values of ε, δ, ω1 and ω2. These equations also involve the filter 

order n. 

 

Butterworth method 

Butterworth filters have a magnitude response which is maximally flat near the center frequency, 

and declines monotonically for ω > 0. The order n of a Butterworth filter is characterized by 

 
where n is the order of the filter. The Butterworth squared magnitude response is monotonely 

decreasing for ω > 0, is equal to 1 for ω = 0 and to 1/2 at the cutoff frequency ω = 1, and 

approaches 0 as ω approaches infinity. It can be seen in Figure below. The poles must satisfy the 

equation 

 
obtained by setting ω = s/j = −js. The roots of this polynomial lie on the unit circle and are given 

by 

 

 
 

 

 

 



Chebyschev method 

Chebyschev filters have a magnitude response which exhibits equal ripple for frequencies 

between 0 and 1, and declines monotonically for ω >1. The order n Chebyschev filter is 

characterized by 

 
where Tn is the Chebychev polynomial, that can be easily founded in filter design literature. 

There is a tradeoff between ripple magnitude ε and transition bandwidth ωu − 1. It can be seen in 

Figure below  

 
The poles of the transfer function satisfy the polynomial equation 

 
The poles may be shown to be 

 
Where 

 
And 

 

 
 

 

 



Inverse Chebyschev method 

Inverse Chebyschev filters have a magnitude response which is monotone decreasing for 

frequencies between 0 and ωc and exhibits equal ripple for frequencies ω >1. The order n inverse 

Chebyschev filter is characterized by 

 
The transfer function can be seen in Figure below 

 
The zeros of the transfer function satisfy the polynomial equation 

 
The zeros may be shown to be 

 
The poles satisfy 

 
Splitting and Combining 

Electrically connecting two uninsulated copper wires together is as simple as bringing them into 

contact at any one point along their length. This allows electrical signals traveling along the wire 

to be readily divided and sent to tow or more destinations. However the splitting of light signals 

traveling a long optical fiber is not so simple. Optical fiber is designed to contain the light within 

the core (using total internal reflection) and guide it to the other end. This means that very little 

of the light that enters the fiber can escape along its length. Clearly then, splitting light signals 

cannot be achieved by simply “ tapping ” into the fiber at one point in the same way as for 

copper conductors. 

One method of achieving optical splitting relies on the fact that, in practice, a small amount of 

light does escape from small cored glass fiber. That being the case, it’s possible to transfer some 

of the light from one fiber to another by placing them sufficiently close together over a sufficient 

length. An obvious variation on this idea involves increasing the closeness of the coupling ( and 

thereby reducing the length over which the coupling must be done) by fusing the fibers’ cores 



together. The optical device designed to split light in this way is called a fused fiber coupler and 

Emona  FOTEx has tow of them. 

The construction of fused fiber couplers is reflected in their schematic symbol as shown in figure 

below. 

 
Finally the fused-fiber coupler can be used to combine signals instead of splitting them. To 

explain, consider the example of a signal connected to A, form the discussion so far we know 

that the signal appears on both parts D (strong) and c (weak). Now , if another signal is 

connected to port B at the same time, that signal must also appear on both ports D (weak) and C 

(strong). Clearly, both of the output ports consist of light from both of the sources and have 

combined. This is a very handy feature if these devices that is used in later experiments. 


